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1. Optimization Method
We define the total loss function as

f = DistC + λMDistM + λGG+ λUU. (1)

Then, our objective function can be concluded as follows:

(W ∗A,W
∗
B) = argmin

WA,WB

f(DA,DB,WA,WB). (2)

The loss function f is not convex in the elements of WA

and WB . Therefore we use the non-linear methods in [23]
to optimize the transform matrices.

We jointly optimize WA and WB by concatenating them
as a whole matrix W ∈ Rd×2d. By optimizing W as a
whole, we can ensure that both matrices are simultaneously
updated. As for gradient ∂f/∂W , we similarly concatenate
∂f/∂WA and ∂f/∂WB to form a single gradient value.
After the optimization of WA and WB , we can easily ob-
tain the projected features of DA and DB from DAWA and
DBWB .

To save space, we only give the gradient of each com-
ponent in f for WA. The gradient of WB can be similarly
formed. From Equation

f = DistC + λMDistM + λGG+ λUU (3)

we have

∂f

∂WA
=
∂DistC
∂WA

+ λM
∂DistM
∂WA

+ λG
∂G

∂WA
+ λU

∂U

∂WA
(4)

For the first three components, the gradient can be simply
formulated as

∂DistC
∂WA

=
∑
c∈CK

(P c
A)

T (P c
AWA − P c

BWB), (5)

∂DistM
∂WA

= (PA)
T (PAWA − PBWB), (6)

∂G

∂WA
=

∑
c∈CL

1

ncA

∑
xi∈Xc

A

(xi − xcA)
T
(xi − xcA)WA. (7)

As for U , the gradient is composed of two parts

∂U

∂WA
=

∂UA

∂WA
+
∂UB

∂WA
(8)

We first find indexes (c, i) ∈ N that triggers UA, then,

∂UA

∂WA
=

∑
(c,i)∈N

(xi)T (xuWD′ − xcAWA), (9)

where D′ denotes the host domain of xu. Then, we find
the indexes (c′, i′) ∈ N that triggers UB , where the nearest
unknown neighbor sample xu is from DA. Therefore, the
gradient for UB can be defined as:

∂UB

∂WA
=

∑
(c′,i′)∈N

(xu)
T (xuWA − xi

′
WB). (10)

2. Time Complexity
We empirically compared the complexity of our method

with top competitors on Intel E5-2650 CPU, with Nvidia
GTX TITAN X GPU for the deep method. The time cost of
each methods on different tasks are shown in Table 1. As
shown, time complexity of CDA is comparable to other do-
main adaptation methods, while its accuracy outperformed
all the compared methods.

3. Effect of Pseudo Labelling
We have compared this process with OSVM [9] and 1-

vs-Set SVM [20]. We show the results for the first itera-
tion of A↔W in Table 3, including accuracies of different
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Methods A↔D A↔W W↔D 5↔6 7↔8
MMDT [8] 10.23 9.56 9.00 368.80 414.72
TCA [18] 2.04 1.92 0.59 25.41 39.04

OpenBP [19] 16109.38 11120.06 6061.15 6445.76 12559.27
CDA 7.28 8.03 4.72 112.05 169.10

Table 1. Time complexity of different methods (second).

kinds of samples, rates of unknown-class samples misla-
beled as known-class and vice versa. It is shown that both
OSVM and 1-vs-Set SVM make imbalanced predictions by
labelling too many known samples as unknown (90.91%
and 95.33%), while our method has much better overall per-
formances.

Method overall known unknown u→ k k→ u
OSVM 58.12 9.09 99.89 0.11 90.91

1-vs-Set SVM 55.93 4.67 99.84 0.16 95.33
LSVM w/o outlier detection 69.19 63.41 74.12 25.88 17.80

LSVM w/ outlier detection (ours) 85.64 81.57 89.10 10.90 10.11
Table 2. The effect of pseudo-labeling process(%).

4. Effect of Number of Labeled Samples
In Office experiment, we set the number of labeled sam-

ples added from each labeled known categories to 3. We
also analysis the impact of this number of labeled samples
per class by conducting CDA with the number of labeled
samples ranging from 1 to 9. The result on the three Office
tasks are shown in Fig. 1.
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Figure 1. Impact of labeled sample number per class

The result showed that the performance of CDA grad-
ually improves when more labeled samples are provided.
This is expected because CDA use these labeled samples
as initial inputs to assign pseudo labels for the unlabeled
samples, and larger amount of labeled samples can produce
more robust pseudo label prediction.

5. Effect of Overlapping Rate
In previous experiments, we set the overlapping rate of

known label spaces between the two domains to 50% (e.g.,

Overlapping rate 0% 25% 50% 75% 100 %
TCA 71.1 70.1 73.3 65.4 65.2

ATI-semi 73.8 72.5 73.4 73.8 74.8
MMDT 75.5 75.8 72.6 73.5 74.6

CDA 76.8 77.8 77.1 77.6 80.0
Table 3. Impact of the overlapping proportion(%).

class 1-10 for DA, 6-15 for DB). To compare the perfor-
mance of our method under different overlapping rates, we
have conducted experiments with overlapping rate varying
from 0 to 1. We show the results of top competitors on the
Office task A↔W in Table 3, and CDA performed the best
under different circumstances.

6. Additional Compared Methods
Besides the methods compared in the paper, we have also

compared with other domain adaptation methods. We first
compare with 3 traditional methods: JDA [16], SA [5] and
JGSA [26]. Then, 4 Deep Learning methods are compared
as well, including: RevGrad [6], DAN [14], DCORAL [22]
and DDC [24].

The full results of these methods as well as the methods
included in the paper are shown in Table 4 and Table 5, for
Office and DukeMTMC-reID respectively.

Methods A↔W A↔ D W↔ D AVG.
NA-avg 62.2± 3.19 61.0± 3.05 66.3± 1.72 63.12

NA 72.6± 2.04 69.4± 2.22 84.2± 3.89 75.40
TCA [18] 73.3± 1.67 70.6± 1.99 83.5± 3.96 75.80
GFK [7] 56.9± 2.89 55.7± 1.46 70.9± 4.85 61.17

CORAL [21] 69.9± 4.41 67.7± 3.13 83.7± 3.65 73.77
JAN [17] 63.8± 1.27 65.5± 0.76 74.7± 1.41 68.00
PADA [2] 60.3± 1.09 60.2± 0.98 70.9± 1.88 63.80

ATI [1] 70.4± 4.15 65.9± 1.80 81.7± 4.74 72.67
OpenBP [19] 62.6± 4.11 62.9± 1.71 67.9± 2.31 64.47

JDA [16] 72.6± 2.21 70.0± 2.03 83.2± 4.19 75.27
SA [5] 72.2± 2.07 69.9± 2.18 82.6± 3.87 74.90

JGSA [26] 62.3± 1.97 62.5± 1.05 67.2± 4.14 64.00
RevGrad [6] 57.1± 1.75 56.9± 1.60 58.0± 1.01 57.33
DDC [24] 55.1± 0.82 55.2± 0.94 55.6± 0.93 55.30
DAN [14] 69.4± 2.42 66.5± 4.13 83.6± 3.22 73.17

DCORAL[22] 68.6± 1.50 67.6± 4.02 83.5± 2.71 73.23
ATI-semi [1] 73.4± 2.28 72.0± 2.87 77.8± 3.40 74.72
MMDT [8] 72.6± 2.15 69.4± 2.19 84.4± 3.99 75.47
AMTL [12] 50.2± 1.45 48.8± 0.90 62.1± 2.17 53.70
CLMT [3] 50.3± 1.47 50.0± 0.77 61.7± 1.23 54.00
MRN [15] 62.2± 3.38 62.4± 2.44 77.4± 3.43 67.33

CDA 77.1± 1.35 75.2± 1.63 88.1± 2.45 80.13
Table 4. Comparing state-of-the-art methods on Office. The 1st/2nd

best results are indicated in red/blue.



Method 1↔ 2 2↔ 3 3↔ 4 4↔ 5 5↔ 6 6↔ 7 7↔ 8 8↔ 1 AVG.
r=1 r=5 r=1 r=5 r=1 r=5 r=1 r=5 r=1 r=5 r=1 r=5 r=1 r=5 r=1 r=5 r=1 r=5

NA-avg 43.6 55.3 29.6 38.2 50.1 54.8 69.2 95.2 38.2 54.4 33.5 42.4 22.0 40.3 76.7 95.4 45.4 59.5
NA 59.3 75.1 41.4 53.2 64.4 78.8 74.1 98.9 49.0 67.1 51.9 65.4 27.6 49.6 78.3 98.9 55.7 73.4

TCA [18] 58.6 74.7 41.0 53.7 64.3 79.0 75.3 98.9 48.6 67.3 51.5 65.3 27.2 49.8 78.3 98.9 55.6 73.5
GFK [7] 59.1 75.1 41.5 53.5 64.5 79.0 75.3 99.0 49.0 67.4 51.9 65.5 27.7 50.3 78.5 98.9 55.9 73.6

CORAL [21] 58.9 75.8 41.6 54.2 64.2 78.4 74.5 98.8 47.7 66.3 51.5 64.6 26.5 48.6 78.4 98.8 55.4 73.2
JAN [17] 24.0 43.7 34.4 64.4 21.4 38.6 75.5 90.2 30.2 60.0 27.7 52.4 44.6 72.1 81.7 92.5 42.4 64.2
PADA [2] 14.0 30.7 39.4 62.2 22.1 35.3 75.4 89.0 30.1 57.4 27.2 50.4 47.4 70.9 77.6 91.1 41.6 60.9

ATI [1] 58.6 74.0 40.6 49.5 65.4 79.2 36.1 78.0 47.9 63.6 52.4 65.6 24.6 42.7 28.2 84.4 44.2 67.1
OpenBP [19] 34.7 49.7 45.9 66.5 27.3 39.8 77.1 90.6 8.1 26.5 37.6 53.5 47.5 67.3 83.5 93.3 45.2 54.9

JDA [16] 58.9 73.4 39.6 48.6 66.9 79.5 43.7 84.0 45.2 59.1 49.7 60.7 22.8 36.0 35.9 84.2 45.3 65.7
SA [5] 59.3 75.1 41.4 53.2 64.4 78.8 74.1 98.9 49.0 67.1 51.9 65.4 25.7 49.7 78.3 99.0 55.5 73.4

JGSA [26] 45.7 61.7 35.1 48.0 62.7 74.7 16.9 88.7 40.3 53.5 43.2 55.6 16.5 31.3 7.2 36.5 33.5 56.2
RevGrad [6] 53.6 71.9 35.9 50.5 54.6 68.8 67.5 97.4 47.8 68.5 45.1 65.7 31.0 60.6 87.6 96.3 52.9 72.5
DAN [14] 53.2 71.0 35.0 47.6 54.9 68.9 77.8 97.2 45.5 66.3 45.6 65.2 31.3 59.9 82.6 97.2 53.2 71.7

DCORAL [22] 52.2 70.8 36.4 50.3 55.0 69.1 78.5 97.4 48.8 70.3 46.7 66.2 31.8 61.2 89.2 96.5 54.8 72.7
DDC [24] 53.1 72.4 37.5 52.7 55.4 71.3 74.2 97.7 46.4 66.7 45.2 63.8 30.6 58.3 92.3 95.6 54.3 72.3
MRN [15] 26.2 46.5 19.2 32.8 34.0 49.6 74.9 94.4 25.9 49.9 24.4 43.1 19.9 50.2 53.6 85.1 34.8 56.5

ATI-semi [1] 53.4 71.8 55.6 71.8 56.5 76.8 39.7 88.9 55.3 69.3 57.6 76.9 46.7 65.6 30.6 86.3 49.4 75.9
MMDT [8] 36.0 51.1 35.7 51.5 57.5 73.2 74.2 98.9 29.2 53.2 22.0 39.5 19.1 43.5 76.5 98.6 42.9 62.3
LMNN [25] 59.4 78.1 42.5 59.1 61.8 74.1 84.7 96.3 53.3 72.2 50.8 66.1 33.5 60.8 90.2 97.7 59.5 75.5

KISSME [11] 55.2 68.6 49.2 71.0 63.1 75.3 86.0 94.9 57.6 74.5 55.3 71.6 45.8 71.6 22.0 56.7 54.3 73.0
XQDA [13] 55.6 68.9 49.1 71.0 63.1 75.3 86.0 94.9 57.6 74.5 55.3 71.6 45.8 71.6 48.2 86.0 57.6 76.7
DLLR [10] 59.2 75.0 41.3 52.9 64.1 78.1 72.9 98.7 48.7 66.9 51.8 64.5 27.9 49.6 78.5 99.0 55.6 73.1
SPGAN [4] 41.6 59.9 31.3 47.5 44.7 58.6 69.6 97.7 41.4 61.0 43.3 59.6 22.8 46.3 74.1 98.0 48.7 69.6

CDA 64.6 80.4 62.4 88.1 67.9 84.9 76.0 98.9 61.5 82.1 59.6 78.1 67.2 83.8 85.6 98.5 68.1 86.9
Table 5. Comparing CMC accuracies with state-of-the-art methods on DukeMTMC-reID(%).
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